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Test data plays a crucial role in the overall software testing process
describes the initial conditions for a test
influence the behavior of the system under test
Most test designs are based on test data generated either at random, or through systematic input space
exploration, i.e. guided through fault ontology or some coverage metric
—> translates to highly non-deterministic probability and time frame for discovering relevant faults.
—> coverage of input space does not correlate to coverage of the output space.

Systematically explore the SUT’s output space to ensure an adequate coverage and to find new input/output
pairs of interest, i.e.:
values, not covered by the existing test-suite, or
values where small changes to the input result in un-proportionally large changes of the output)
—> better chance of exposing system faults
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Al-enabled output-space exploration

NN as SUT approximation

Output space exploration -
define of new outputs

Reverse exploration of NN >
obtain respective inputs

Use new inputs for testing
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The Evaluation Phase SIEMENS
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Pilot Context




Research Context

Train Control System

an advanced train protection system designed to
monitor and control train movements with the goal to:
1. increase safety

2. reduce infrastructure utilization

3. increase operational efficiency

by automatically stopping the train in cases where the
train engineer fails to act according to protocol.

Challenges

- high level of complexity, heterogeneity, and
sensitivity to the uncertainties of sensor data (e.g.
positioning information)
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Pilot approach

Step 1: Train
* Obtain Test Data
« 2000 Observation with 80/20 split
* Neural Network Architecture & Training

- 2-layer NN (1 fully-connected layer with 5
neurons) in TensorFlow

* Inference: ReLU non-linearity applied to
hidden layer, identity function to output layer

* Loss Measurement: Mean Square Error
*  Optimizer: ADAM

Step 2: Query
« Exploration Strategies
« Generation of Adversaries

Step 3: Evaluate
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Query NN SIEMENS
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- Synthesizing an adversarial example:
+ Use of FGSM (fast gradient sign method)
+ constrained minimization within a predefined
max. change budget - €.
- Given a new breaking distance y’, i.e.
target_output = ([208.564966],)
 try to find an adversarial input x’
- constrained by some distance metric used to
quantify similarity (&), so that ||x — X|| < .
* At the same time - fix the model
 already trained w & b won'’t change
 the only thing left to modify is the input vector
X.
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EXPLAINING AND HARNESSING
ADVERSARIAL EXAMPLES

l1an J. Goodfellow, Jonathon Shlens & Christian Szegedy

Google Inc.. Mountain View, CA

ABSTRACT

Several machine leaming models, including neural networks, consistently mis-
classify adversarial examples—inputs formed by applying small but inteationally
worst-case pertarbations o examples from the dataset. such that the perturbed in-
put results in the model outputting an incorrect answer with high confidence. Early
attempts at explaining this phenomenon focused on noalincarity and overfitting
We arguc instead that the primary cause of ncural networks” vulnerability to ad
versarial perturbation is their lincar nature. This explanation is supported by new
quantitative results while giving the first explanation of the most intriguing fact
about them: their gencralization across architectures and training sets, Morcover.
this view yiclds a simple and fast method of generating adversanial examples. Us-
ing this approach to provide cxamples for adversarial training, we reduce the test
sct error of a maxout network on the MNIST datasct

1 INTRODUCTION

ly ot al) Q0145 made an intriguing discovery: several machine keaming models, including
-the-ant ncural networks, arc vulnerable to adversarial examples. That is, these machine
learning models misclassify cxamples that are oaly slightly different from correctly classified cxam-
ples drawn from the data distribution. In many cascs. a wide varicty of models with differeat archi
tectures trained on different subscts of the training data misclassify the same adver: cxample
This suggests that adversarial examples expose fundamental blind spots in our training algorithms

The cause of these adversarial examples was a mystery. and speculative explanations have suggested
it is duc to extreme nonlincarity of decp ncural networks, perhaps combined with insufficient model

ping and insufficicnt regularization of the purcly supervised leaming problem. We show that
these speculative hypotheses are unnccessary. Lincar behavior in high-dimensional spaces is suf-
ficient to cause adversarial examples. This view cnables us to design a fast method of gencrating
adversarial cxamples that makes adversarial training practical. We show that adversarial training can
provide an additional regularization benefit beyond that provided by using dropout (Srivastava ctal)
2019 alone. Generic regularization strategics such as dropout, pectraining. and model avera;
not confer a significant reduction in 4 model’s vulnerability to adversarial examples, but cha
to nonlincar model familics such as RBF nctworks can do so.

ang

Our explanation suggests a fundamental teasion between designing models that are casy to train due
to their lincarity and designing models that use nonlinear effects to resist adversarial perturbation.
In the Jong run. it may be possible to escape this tradeoff by de: £ more powerful optimization
methods that can succesfully train more nonlincar models.

2 RELATED WORK

Szegedy cf all(20146) demonstrated a varicty of intriguing propertics of ncural networks and related
models. Those most relevant to this paper include
o Box-constrained L-BFGS can reliably find adversarial examples.

* On some datascts, such as ImageNet (Deng et al}, 2009), the adversarial examples were so
close to the original examples that the differences were indistinguishable to the human cye

o The samc adversarial cxample is often misclassified by a varicty of classificrs with different
architecturces or trained on different subscts of the training data
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» Original Coverage obtained from 2000 Test Cases generated at random
* Non-uniform distribution in output space - Coverage in the category (700 — 800ft.) - <2%
« Coverage increase to at least 250 data points per category after application of our method

Original Testcase Distribution Original Testcase Distribution (blue) + New Test Case Distribution (red) = Target Testcase Distribution (blue + red)

Test Case Distribution
Test Case Distribution
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Summary, Next steps & Transfer to the BUs SIEMENS
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Summary
Ensured significant increase of output-space coverage

Initial findings of deviations between results from SUT and NN on newly generated datasets

Next Steps
Addressing some open questions:
Stateful vs stateless problems
Mapping real data to NN input layer
Automated test oracle & test data generation

Efficiency (vs customer’'s Monte-Carlo Simulation approach) & Effectiveness benchmark (Mutation Test)
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